A Note about Proving Non-γ under a Finite Non-microstates Free Fisher Information Assumption

نویسنده

  • YOANN DABROWSKI
چکیده

We prove that if X1, ..., Xn(n ≥ 2) are selfadjoints in a W ∗-probability space with finite nonmicrostates free Fisher information, then the von Neumann algebra W ∗(X1, ..., Xn) they generate doesn’t have property Γ (especially is not amenable). This is an analog of a well-known result of Voiculescu for microstates free entropy. We also prove factoriality under finite non-microstates entropy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimitri Shlyakhtenko Lower Estimates on Microstates Free Entropy Dimension

By proving that certain free stochastic differential equations with analytic coefficients have stationary solutions, we give a lower estimate on the microstates free entropy dimension of certain n-tuples 1. In particular, for small q, q-deformed free group factors have no Cartan subalgebras. An essential tool in our analysis is a free analog of an inequality between Wasserstein distance and Fis...

متن کامل

Free Fisher Information for Non-tracial States

We extend Voiculescu’s microstates-free definitions of free Fisher information and free entropy to the non-tracial framework. We explain the connection between these quantities and free entropy with respect to certain completely positive maps acting on the core of the non-tracial non-commutative probability space. We give a condition on free Fisher information of an infinite family of variables...

متن کامل

Remarks on Free Entropy Dimension

We prove a technical result, showing that the existence of a closable unbounded dual system in the sense of Voiculescu is equivalent to the finiteness of free Fisher information. This approach allows one to give a purely operatoralgebraic proof of the computation of the non-microstates free entropy dimension for generators of groups carried out in an earlier joint work with I. Mineyev [4]. The ...

متن کامل

. O A ] 4 A pr 2 00 5 1 Remarks on Free Entropy Dimension

We prove a technical result, showing that the existence of a closable unbounded dual system in the sense of Voiculescu is equivalent to the finiteness of free Fisher information. This approach allows one to give a purely operatoralgebraic proof of the computation of the non-microstates free entropy dimension for generators of groups carried out in an earlier joint work with I. Mineyev [4]. The ...

متن کامل

2 00 5 Rectangular Random Matrices , Related Free Entropy and Free Fisher ’ S Information

We prove that independent rectangular random matrices, when embedded in a space of larger square matrices, are asymptotically free with amalgamation over a commutative finite dimensional subalgebra D (under an hypothesis of unitary invariance). Then we consider elements of a finite von Neumann algebra containing D, which have kernel and range projection in D. We associate them a free entropy wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009